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Supersymmetry in Jab-Teller systems 
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7001, Australia 
$ Department of Physics, University of Canterbury, Christchurch 1, New Zealand 
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Abstract. Supersymmetric Hamiltonians are constructed for EO E and T O T  Jahn-Teller 
systems in octahedral symmetry. These represent a new class of Jahn -Teller Hamiltonians 
with a higher continuous symmetry, since they necessarily include anharmonic couplings 
among the vibrational modes. In such applications, supersymmetry has the physical con- 
sequences of relating Jahn-Teller energies to purely anharmonic energy shifts of pure 
vibrational states, and of relating Ham reduction factors to anharmonic dressing or renor- 
malisation of the matrix elements of a vibrational operator. In each of the above systems 
a supergroup classification scheme is used to assign levels, and perturbation calculations 
are made of Ham reduction factors and the associated anharmonic renormalisation effects. 

1. Introduction 

Since the discovery of the possibility of supersymmetry, or invariance under boson- 
fermion mixing, in physical theories, many supersymmetric models have been discussed 
in the context of relativistic field theory and supergravity. Our aim will be to construct 
and investigate similar models in a non-relativistic theory with applicability to existing 
topics in condensed matter theory, and in particular to Jahn-Teller active systems. 

Early non-relativistic applications of supersymmetry (e.g. Nicolai 1976) involved 
supersymmetric Hamiltonians of a relatively simple type. More recently superfield 
formulations have found applicability in the theory of the transport properties of alloys 
(Efetov 1983). 

A more useful lead for our work is furnished by Witten (1981) who described 
models in supersymmetric quantum mechanics, i.e. field theories in 0 + 1 dimensions. 
Such models have been derived from the superfield formalism of Salam and Strathdee 
(1975) by restricting to one dimension (Cooper and Freedman 1983). 

In Jahn-Teller active systems, the electronic states of interest are the orbitally 
degenerate states of a substitutional ion, the boson modes are the vibrations of the 
surrounding ligands, and the interaction terms in the Hamiltonian correspond to the 
coupling of electronic and vibrational states and also to anharmonic effects amongst 
the vibrational modes. 

Higher continuous symmetries have found a special importance in the discussion 
of properties of a Jahn-Teller system. Judd (1982) has reviewed the application of 
Lie groups, particularly O( n), with n = 2 ,  3, 4, 5, to various Jahn-Teller systems; a 
simple tetragonal example is discussed by Stedman (1984). Judd (1984) has described 
the interest of such higher symmetries as enormous. 
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In all such cases of higher symmetry, the generators correspord to transformations 
in which the electronic states are mixed amongst themselves, while simultaneously but 
separately the vibrational states are mixed among themselves. To achieve invariance 
of the Hamiltonian under such operations, it is usually necessary to restrict the possible 
terms in the interaction severely. Only linear coupling of the electronic states with 
the vibrations is permitted, and if more than one vibrational level is involved, only 
one vibrational frequency and one coupling constant (the ‘equal coupling’ constraint) 
is allowed. Nevertheless the resulting Hamiltonian may prove to be a reasonable first 
approximation for a given system (e.g. F’: CaO; for references see Judd (1984)). The 
higher symmetry may then permit analytic calculations which act as mileposts in a 
more refined, if numerical, approach in which the constraints associated with the higher 
symmetry are avoided. Even when the higher symmetry is badly broken in practice, 
it is formally advantageous in a symmetry-related problem to use the greatest available 
chain of groups for classification. The manner of breaking of a higher symmetry may 
itself give useful information, as in particle physics. 

It is both natural and desirable, then, to consider extensions of such higher sym- 
metries. If we relax the requirement that electronic and vibrational states should 
transform separately, we are led to consider the possibility of constructing supersym- 
metric Jahn-Teller Hamiltonians. In this paper, we demonstrate the possibility and 
utility of this extension. We also demonstrate the application in this context of recent 
advances in the analysis of supergroups and their branching rules. 

Some consequences of supersymmetry are obvious at this stage. First, if bosons 
and fermions are to intermingle, we must require the same number of each (Witten 
1981). This immediately suggests that for octahedral symmetry the EO& and T O T  
systems (in which fermions and bosons both form doublets and triplets respectively) 
are of particular interest. We note (cf 99 3.1, 3.2.2) that while it is convenient to 
choose such systems in which bosons and fermions transform similarly, it is not 
necessary; indeed, the ideas of N-extended supersymmetry and of the Wess-Zumino 
model (Wess and Zumino 1974), reduced to one dimension, each suggest the possibility 
of models in which for example a doublet fermion is coupled in a supersymmetric 
manner to two scalar bosons. However, the EO E and T O T  systems will be adequate 
illustrations. 

Second, the energies of all bosons must be equal, as in the higher symmetry models 
referred to above; in addition, this energy must equal that of all the fermions. (The 
degeneracies associated with supersymmetry must hold at zero order of the perturba- 
tions.) Within one level, which is all that we shall consider, the electronic states 
certainly have the same energy, and it is only a formal constraint to require this energy 
to match the common vibrational energy. We may anticipate here one result of our 
analysis ( 9  5.1); the restriction to a single mode frequency is known to necessitate 
certain sum rules between the Ham reduction factors up to at least fourth order 
in perturbation (Payne and Stedman 1983~) .  

Third, there must be anharmonic terms present in the interaction. The linear 
electron-vibration (or Jahn-Teller) coupling is quadratic in the fermion and linear in 
the boson operators (equation (16)); under replacement of a fermion by a boson 
operator, we may expect to generate cubic terms in boson operators. This represents 
a new departure in Jahn-Teller theory. There has been considerable interest in the 
inclusion of anharmonic effects in Jahn-Teller theory (e.g. Bates 1978), and a systematic 
perturbative method for their inclusion has been developed by Payne and Stedman 
(1983a). The prospect of a model which includes anharmonicity and yet possesses a 
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higher symmetry has much appeal, and could conceivably have a similar practical 
importance as a case study in the anharmonic regime to that of the more conventional 
higher symmetry models in the linear coupling regime. The strength of the allowed 
anharmonicity is of course highly constrained, since it mixes with the linear coupling 
under a supersymmetry transformation. 

Fourth, all these interactions are also constrained by the nature of the physical 
application; in particular, they must be invariants under the point group operations. 
This invariance, together with some important consequences, has been emphasised by 
Ham (1965). It may not be superfluous to re-emphasise that in the absence of 
cooperative effects, etc, Jahn-Teller systems satisfy all point group symmetry require- 
ments, despite the notorious breakdown of symmetry associated with the names of 
Jahn and Teller. Supersymmetry is as compatible with these requirements as it is with 
the internal symmetries encountered in particle physics applications (Salam and Strath- 
dee 1975). In fact, it is easy to construct supersymmetric Jahn-Teller Hamiltonians; 
one need only ensure that the supersymmetric charges (or generators) transform 
irreducibly under the point group, and then construct the Hamiltonian as their invariant 
square. A reasonably general prescription for this procedure is given and illustrated 
in 9 3.1. Since the symmetry aspects of such constructions are familiar to experimenters 
as well as to theorists in this area of condensed matter physics, we consider the 
Jahn-Teller application of supersymmetry to be particularly instructive. 

Fifth, supersymmetry will forge relationships ( 9 9  4.4, 5.2) between the properties 
of one-fermion, zero-boson and zero-fermion, one-boson states and thus between 
parameters associated with the Jahn-Teller active ion, such as the Ham reduction 
factors (Ham 1965), and parameters associated with the vibrations alone. Again this 
represents a new departure in Jahn-Teller theory, whose consequences will be investi- 
gated. We note that relationships involving multifermion states have no such physical 
interpretation; multifermion states are unphysical, in that an ion may occupy only one 
state at any time (§ 3.1). 

How realistic is supersymmetry? Nature is under no obligation to furnish us with 
an approximate realisation of a supersymmetric Jahn-Teller system. There is no 
experimental evidence for supersymmetry in any field of physics at this stage; it is 
indeed certain only to be broken. The requirement that all vibrational frequencies 
should be identical itself prohibits an exact application to a crystal lattice, which 
possesses a broad frequency spectrum; as noted above, this very breadth has a charac- 
teristic qualitative effect on reduction factors. The same objection applies also to the 
conventional higher symmetries of the ‘equal coupling’ type. As mentioned above, 
this has not prevented an approximate physical realisation of such a symmetry in the 
F’: CaO system, nor does it negate the formal value of a higher symmetry as an initial 
classification scheme etc. 

Supersymmetry is certainly no less realistic than any of the conventional higher 
symmetries (§ 3.2.3) Anharmonicity is always present. In conventional higher sym- 
metries, it is ignored; in our supersymmetric models, it is constrained by an equal- 
coupling condition which parallels exactly the equal coupling condition of several 
higher symmetry Jahn-Teller systems. The wide variety of Jahn-Teller systems now 
reported (e.g. Challis and de Goer 1983) indicates that such levels of anharmonic 
coupling are readily attainable in practice. 

In Q 2 we discuss some elementary ideas in supersymmetric quantum mechanics, 
with one boson and one fermion state as basis. In § 3 we generalise to doublets and 
triplets, and construct the EO E and T O T  supersymmetric Jahn-Teller Hamiltonians. 
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In 0 4 an analysis in terms of supergroups is given to  classify the eigenstates of the 
supersymmetric Jahn-Teller Hamiltonians, and their eigenvalues are evaluated to 
second order, illustrating the connection imposed by supersymmetry between Jahn- 
Teller energies of the one-fermion states on the one hand and anharmonic corrections 
to the energies of one-boson states on the other. In § 5 the Ham reduction factors 
for the supersymmetric Jahn-Teller Hamiltonians and their supersymmetric 
analogues-the effects of higher-order anharmonic dressing on vibrational transitional 
amplitudes-are discussed, and calculations are performed to fourth and to second 
order respectively. 

2. introductory applications 

We adopt here a very elementary approach which does not assume previous knowledge 
of supersymmetry transformations. An essential feature of supersymmetric quantum 
mechanics is that a charge (or conserved quantity) exists which is equal to the square 
root of the Hamiltonian (Lancaster 1983). 

Consider first the Hamiltonian 

H1 = f'f + b'b (1) 

where f, b are fermion and boson annihilation operators respectively. This Hamiltonian 
is almost trivially supersymmetric; this is indicated by its form and by the degeneracies 
of its eigenstates. (If IB, F )  is the eigenstate with B bosons and F fermions present, 
the states lB, 1) and IB+ 1,O) are degenerate.) 

In this example the generators of supersymmetry transformations are 

SI = f 'b  (2) 

(which obviously replaces a boson by a fermion) and its adjoint S:.  It is easily seen 
that S: = 0, and that if the self-adjoint charge is defined by Q1 = S1 + S:,  then H1 = Qf = 
{ S , ,  S : } .  The supersymmetry itself ( [ H , ,  S , ]  = 0 )  then follows directly from a Jacobi 
identity amongst commutator ([ 1) and anticommutator ({ }) brackets: 

where A = B = S1, C = S:.  

the Hamiltonian 
This example is readily extended to N fermions and N bosons (e.g. Nicolai 1976), 

N 

HN = c (f:fi + b:bI) 
i = l  

being invariant under the transformation generated by 
N 

S N  = c f:bl. 
1 = l  

(4) 

The proof is carried out in the same manner; Sk =0,  and so the construction HN = 
Q', = (S, + S ; ) *  guarantees supersymmetry through equation (3). In this example 
all states with the same total number of fermions and bosons are degenerate. 

Of more interest are supersymmetric models which contain a linear interaction 
with the bosons as in the relativistic and field theoretic models (e.g. Salam and Strathdee 
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1975). Such models are illustrated by Witten (1981) (e.g. one may take W ( x )  = -x  + 
a x 2  in equation (3.2) of Cooper and Freedman (1983)). For example 

HI = f'f + (6) 

is supersymmetric with respect to the generator 

SI =f+P 
where 

/3 = b-ac$2, 4 =  b+  b'. 

(7) 

The proof is most easily performed again by defining Ql = SI + S:,  HI = Q:; in 
particular 

HI =f'f[P, P + I + P + P .  (8) 

A more general example may be found by using these definitions together with 
(7) and the definition /3 = exp G ( 4 ) b  exp(-G(4)); G ( 4 )  can be any real function of 
4. (In the above example, G(4)  =$ad3.)  Note that since exp G ( 4 )  is non-unitary, 
p is not a boson operator, i.e. [p,  p'] # 1; it is just this fact which results in a linear 
coupling in equation (6). 

As anticipated in the introduction, the supersymmetric Hamiltonian with a linear 
coupling term (f'f4) also contains cubic anharmonicity (43). We note the presence 
of a quartic term ( c $ ~ )  at higher order; this is also a general feature. While confined 
to one fermion and one boson, this Hamiltonian is a prototype of the result that we seek. 

It is a simple exercise in perturbation theory to show that to second order in a, 
the ground state l0,O) is unshifted and the eigenstates corresponding to IB, 1) and 
IB + 1,O) remain degenerate with the common energy 

Ee+l = B + 1 - 2 4 a Z ( B + 1 ) ' - 3 a Z .  (9) 
The uniqueness and zero energy of the ground state, and two-fold degeneracy of all 
other states, are elementary consequences of the above algebraic structure of supersym- 
metric quantum mechanics (Lancaster 1983). The computation of perturbation 
expressions analogous to equation (9) in supersymmetric Jahn-Teller systems will be 
outlined in B 3. 

3. Supersymmetric Jahn-Teller Hamiltonians 

3.1. Introduction and general construction 

We search for supersymmetric Hamiltonians with relevance to Jahn-Teller active 
systems. The implies that they should contain more than one fermion and boson (as 
HN, equation (4)) as well as a linear coupling between them (as HI, equation (6)),  and 
that they should be invariant under the appropriate point group symmetry operations. 

Fermions are naturally incorporated by identifying a one-fermion state f: 10) as an 
ionic state ( i ) ,  a member of the degenerate set under consideration. This identification 
is the basis of a particularly convenient quantum-field theoretic method, pioneered by 
Abrikosov (1965) for spin operators, and applied in Jahn-Teller theory by Gauthier 
and Walker (1976) and Payne and Stedman (1983a, b, c). 

It might be objected that the statistics of the ionic levels is Maxwell-Boltzmann 
rather than Fermi-Dirac, the multi-fermion and zero-fermion states being unphysical. 
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However, as in the field theoretic method, the effects of unphysical states may be 
projected out (Abrikosov 1965). 

A more serious objection is that since there is now a wide variety of adaptations 
of the standard field theoretic methods for spin systems, a bosonic analogue of the 
Abrikosov technique could be used, removing the motivation for the introduction of 
supersymmetry into Jahn-Teller theory. The prototype of (6) gives some insight here. 
We may define a 'bosonised' version of (6) for which If, f'] = 1 ; (8) still holds. However, 
it is difficult, perhaps impossible, to identify a continuous symmetry operation for this 
bosonised Hamiltonian for the following reasons. First, since p is not a boson operator, 
(7) is not a conventional canonical transformation for the bosonised case. Second, no 
combination of the operators f P ,  f'p, P'f, P'f' commutes with the bosonised Hamil- 
tonian. Third, the bosonised Hamiltonian has second-order eigenvalues in analogy to 
(9) of the form 

E' = T +  (SN'(N'  - 1) - 24T2- 3)a2 

where N' = (f+f),,, T = B + N ' .  This necessarily shows the 'supersymmetry' degeneracy 
( E '  depends on T only for N'=O, 11, but no further degeneracies (in general E' 
depends on N' as well as T ) .  

The unperturbed Hamiltonian is HN (equation (4)), N being the number of fermion 
and of boson states. We generalise the method of 9 2 by defining as generator of 
supersymmetric transformations 

N 

s= c f'Pi, 
i = l  

PI = exp G ( 4 ) b l  exp -G(+),  

[PI? P,I = 0,  [PI, f I+' 1 = 0 

(11) 

(12) 

where (4) = (4], 42, . . . , 4N) and +I = b, + b:, G being a real function as before. Hence 

and S 2 = 0  as required. We expand the exponentials in (11) in terms of repeated 
commutators. Since [G(4) ,  b:] = *G(')(+),  the superscript i denoting a partial 
derivative with respect to $5, and since any two functions of (4) commute, we have 

(13) PI = b1 - G'"(+), 

[Pi, P i ' ]  = ai, - 2G""(4). (14) 
The Hamiltonian is found by constructing the symmetric square of S and becomes 

H = c f + f j  [Pi, P f 1 + p :pi = HN + H, + Ha, 
i j  i 
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where H, represents the ion-vibration coupling, and Ha anharmonic couplings amongst 
the vibrations. Clearly if G (  #) contains a cubic term, H, will contain a linear coupling, 
and Ha cubic and quartic terms. A quadratic coupling in H, may be obtained from a 
quartic term in G(# ) ,  etc. 

We have chosen G to depend on the r#+ or position operators rather than the 
momentum operators T,  = b, - b i  so as to ensure that H, and Ha involve the conven- 
tional electric, rather than magnetic, couplings to and among the vibrations. 

By construction, the Hamiltonian H (equation ( 1 5 ) )  is supersymmetric. It is also 
guaranteed to be invariant under the point group if the fermions and bosons, (fi), (bi), 
transform in the same manner, and if G( 4) is an invariant function. These conditions 
also guarantee that (pi) and ( bi) transform in the same way, and that the generator S 
is an invariant. In short, supersymmetric Hamiltonians are readily constructed, the 
method requiring only a vibrational and invariant operator G ( 4 )  as input. 

It is not necessary that S be an invariant. An example is discussed in the T1 0 T~ 
system (§ 3.2.2). In general, one might use the fermion and boson operators to construct 
a set of generators { S :  ( I  = 1 , 2 , .  . . , / A ( }  transforming as an irrep A of the symmetry 
group, and then construct the invariant and supersymmetric Hamiltonian as H = 
Zl  {$, S:'}. This gives no new results in the cases discussed in 0 3.2. 

3.2. Octahedral examples 

3.2.1.  N = 2 :  EO&.  In the EO& system, fermions ( f i )  and bosons ( b i )  each form a 
doublet transforming as the E irrep of the group 0. We choose a D4 2 D2 subgroup 
basis, so that (&, ~ $ ~ ) - ( ( l / d 3 ) ( 3 2 ~ - r ' ) ,  x 2 - y 2 ) .  

Elementary point group theory indicates that the only possible quadratic, cubic 
and quartic invariants that may be constructed from (#) are 

I2=(4;+4:)? I3 4; - 3 4 i d J k  I ~ =  I : ;  ( 1 8 )  
in addition, that (@)= (4: -4:, -24142) also transforms as ( r # q ,  42). 

A supersymmetric Jahn-Teller Hamiltonian may readily be derived as follows. We 
define GE = -far3, the numerical constant included only for later simplicity. This gives 
in ( 1 1 )  

pi = bi + sei. ( 1 9 )  
From the above comments, this form could have been written down as an obvious 
symmetry-preserving extension of the operators bi, without the need for reference to 
GE. Equation ( 1 6 )  then gives as one component of the supersymmetric Hamiltonian 
the standard coupling in the E O  E system: 

Equation ( 1 7 )  gives a mixture of cubic and quartic anharmonicity (the invariants are 
defined in ( 1 8 ) ) :  

HF = a13+ .'I4. ( 2 1 )  

HE=H2+HF +H," ( 2 2 )  

The simplest supersymmetric Jahn-Teller Hamiltonian is then 

with the definitions of equations (4), ( 2 0 ) ,  ( 2 1 ) .  
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If I4 were also included in GE, one  could as readily obtain a quadratic ion-vibration 
coupling and anharmonic terms up  to  sixth order; for simplicity we omit these. 

3.2.2. N = 3 :  TOT. Let (fi), (bi), i = 1 ,  2, 3, span the T2 irrep of 0, in the basis 
D3 2 C3, i.e. - ~ 2 x 3  etc. We  have the lower-order invariants 

3 

J 2 =  C (4i12, 53 = 41 4243, J4  = ( 4 X  + 4:4; + 4;43  ( 2 3 )  
1=1 

and (@)=(&43, + 3 ~ 1 ,  4142) also transforms as T2 in this basis. The  definition 
GT = -aJ3 produces equation (18) in this case also, and as before we derive the T 2 0  T~ 
supersymmetric Jahn-Teller Hamiltonian 

HT= H 3 + H T + H T ,  (24) 

HT = 2a[(f:f3 +f:f2)41+ et CYCI, ( 2 5 )  

HZ = 3aJ3+ a2J4. ( 2 6 )  
The same construction applies to TI 0 T ~ ;  here S (equation (10)) is now not an invariant, 
but transforms as the irrep A2 of 0. However, its symmetric square HT is invariant 
since A 2 0 A 2  = Al. The TI 0 T~ and T 2 0  T~ Jahn-Teller systems are  isomorphic. 

3.2.3. Discussion. Once again, the strategy has been simply to write down a suitable 
generator (equation (10)) and t o  form its symmetric square. As the  above derivations 
emphasise, the terms arising in the supersymmetric Hamiltonian a re  just and only 
those allowed by point group symmetry at  any order. Supersymmetry merely constrains 
their relative magnitudes, and that absolutely. The  appearance of fourth-order anhar- 
monicity at  second order in the parameter a has a commendable realism. It may be 
noted that this parallels exactly the fourth-order terms arising in the massive interacting 
Wess-Zumino model when the auxiliary fields a re  eliminated (Fayet and Ferrara 1977, 
p 270). This suggests that the auxiliary field formalism could find application in this 
context also; we have not explored this. 

The  relative magnitude of the anharmonic and linear couplings associated with 
these supersymmetric Jahn-Teller Hamiltonians has consequences f o r  the Jahn-Teller 
effect and adiabatic energy surfaces in such systems. On inserting this relative magni- 
tude into the equations of Bates (1978, p 261) we find that a supersymmetric TOT 
system will be prone to a trigonal distortion, whose magnitude in the weak to  intermedi- 
ate coupling case ( a  < 1) is only very weakly dependent on any deviation of the 
anharmonic coupling f rom the supersymmetric value. Likewise, ou r  supersymmetric 
EO E system has a warping term Ha which destroys the O ( 2 )  symmetry of the system 
under purely linear coupling, and whose magnitude affects tunnelling etc. In  a practical 
situation quadratic coupling will vie with anharmonicity in determining e.g. the nature 
of the EO& warping (equation (11.32) of Bates (1978)). As noted above, quadratic 
coupling can readily be included in a supersymmetric Hamiltonian and is not constrained 
by supersymmetry to the magnitude of cubic anharmonicity. 

In each system, then, it is difficult t o  untangle the effects of the anharmonic term 
and the quadratic coupling term from experiment, and so to  investigate whether a 
Jahn-Teller system is approximately supersymmetric. Certainly the constraints 
imposed by supersymmetry have as much realism as those associated with conventional 
higher symmetries of Jahn-Teller systems. 
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4. Supergroups and classifications of states 

4.1 .  Group chains 

In the absence of interactions the Hamiltonian HN of equation (4) is invariant under 
the supersymmetry transformations generated by Si =fTbj  and S:+ =fib;, i, j = 1, 
2 , .  . . , N Together with b:bi andf:fi these generators close on the (2N)2-dimensional 
supergroup U(N/N)  (see e.g. Freund and Kaplansky 1976). 

In the interacting case, it is the subgroup U(1/1) generated by SN (equation ( 5 ) ) ,  
SA, HN and fermion number F = Z E l  fTf i  which is exact, since after replacing b, by 
pi (equation (1 1)) the algebraic construction is identical to that in the non-interacting 
case. 

These considerations suggest that the eigenstates should be classified according to 
the group chain 

U( N /  N )  3 U( 1/ 1) 0 U( N )  3 U( 1/ 1) 0 O( N )  3 U( 1) 0 U( 1) 0 G, ( 2 7 )  

the embedding of the ion point group G in O ( N )  being defined by the fundamental 
branching rule [ 13 1 R where R = E or T is the N-dimensional irrep of G under 
consideration. The final branching U( 1/ 1) 3 U( 1) @U( 1) corresponds to the separation 
into boson and fermion subspaces. 

In the non-interacting case the eigenstates are enumerated by the set 

An alternative group chain is suggested by these basis states: 

U ( N / N )  3 U ( N ) O U ( N )  3 (U(1 )O. .  . O U ( l ) ) 0 ( U ( l ) O . .  . O U ( l ) )  (29) -- 
N N 

with separate factors for bosons (phonons) and fermions (ionic states). It is with 
respect to the U( 1/ 1) OG basis that the classification is maintained in the presence of 
interactions. 

In either case at the occupation number n level, an irreducible multiplet of U(N/N)  
is labelled as { n} ,  corresponding to a rank-n graded-symmetric tensor (antisymmetrisa- 
tions being required for fermionic tensor components). The supergroup branchings 
may be deduced from the general rule for U( rt + su/ ru + sf) 3 U( r/ s) 0 U( t /  U )  (Dondi 
and Jarvis 1981, King 1975, 1982) 

where the symbol 0 denotes an inner Kronecker product and the summation is over 
partitions A in the symmetric group Si,,. 

In the chain U(N/N)  3 U ( 1 / 1 ) 0 U ( N )  (equation (27)), we have 

{n}J.{n}x{n}+{n-l, l}X{n-l ,  1}+. . .+{n-N+1 ,  lN- ' )x{n-N+1,  lN-l}, 
(31) 

using ( n ) o ( l )  = ( I ) ,  and that diagrams for U(r /s)  vanish unless they lie within an 
L-shaped envelope with horizontal and vertical arms of width r and s respectively. 
(For U( 1/ l ) ,  this limits us to diagrams of one hook, and for U( r) U(r/O), to diagrams 
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with the number of rows less than or equal to r.) Finally, using the rule for U(r /s)  2 

U (  r )  X U (  s) (Dondi and Jarvis 198 1, King 1975) 

we have in the present case simply 

{ P ,  1"J.{(P}{4)+{p-l){4+1}. (33) 

The branching rules of (32), (33) suffice to determine the phonon and ion content 

In the chain U ( N / N )  2 U ( N ) O U ( N )  (equation ( 2 7 ) )  we have instead 
at level n of all irreps of G contained within a fixed irrep { n - k, 1 '} of U(N), 0 - = k s N .  - 

{ n ) J  { n }  x (0) + { n  - 1) x { 1) +. . . + I n  - N )  x U N )  

with truncation if n < N. 
The branchings U ( N )  2 O ( N ) ,  known from classical group techniques, are 

N = 2 :  

{n)J.[n]+[n - 21+. . . + (LO1 or [11), 

{ n  - I ,  1 > ~ . [ n  - 2]+[n - 4]+. . . + ([d] or [I]);  

N = 3 :  

{ n )  J. [ n I +  [ n  - 21 +. . . + U01 or [ l l) ,  
{ n - 1 , l } ~ . [ n - 1 1 + [ n - 2 1 + [ n - 3 1 + .  . .+([i] or [ l ] ) ,  

{ n - 2 ,  1~}~ . [n -3 ]+[n -51+ .  . .+( [ i ]or [d l ) .  

c_ - 
- -  

Here [ p ]  has parity (-l)p and [j] has opposite parity. The bracketed alternatives 
are for n even and n odd respectively. 

The unperturbed Hamiltonian HN has both U ( N )  and O ( N )  as invariance groups 
(for bosons or fermions or both). This means that the unperturbed eigenstates listed 
in the following tables may be classified irreducibly under these groups; this in turn 
suffices to find these states and to give a full parentage classification for the entries 
listed, the perturbed eigenstates being in one-one correspondence. 

The spatial symmetry group of the true eigenstates is the octahedral group 0 in 
our examples. The embedding of 0 in O ( N ) ,  N = 2, 3, is defined by taking the N 
one-particle states in either the boson or fermion space as partners of the vector 
representation of O ( N ) .  This implies an embedding O ( N )  2 0 which has no necessary 
connection with the embedding of an octahedron in physical N-dimensional space. 
(In fact O ( 2 )  does not even contain 0 as a subgroup.) This distinction, together with 
the branching rules for the embeddings we require are discussed by Butler (1981) (see 
his equations (7.4.1), (7.4.2)). 

4.2. E @ &  

We list in table 1 representative eigenfunctions for each of the lowest levels of the 
supersymmetric EO E system, in the notation of equation (28) with N = 2 and with 
the omission of overall normalisation factors and of terms of order a. The other 
members of each level may be obtained by applying supersymmetry or octahedral 
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operations. For example, corresponding to 11 1 0 0) we have 

S'I1 1oO)=(f:bl+f:b2)b:b:~0)=~1001)+~01 l o ) ,  

while octahedral operations mix in 12 0 0 0) - 10 2 0 0) and 11 0 1 0) - 10 1 0 1) respec- 
tively. 

The classification of these levels in each group chain is also given. The embedding 
of 0 in O(2) (see 8 4.1) is defined by the rule [1].1E(2) (numerical irrep labels for 0 
are those of Butler (1981)), together with the effects of taking symmetrised products. 
The resulting branching rules are [O].lAl(0), [61J.A2(6), [3plLAl+A, (O+d),  [3p* 
1]J. E(2) where p is an integer. 

The complete branching U(2/2) 2 U( l / l ) O O  becomes 

(3p)J 2 X ( ~ P E + P ( A I  +A2)), 

( 3 ~  * 1) 3.2 X ( ( 2 ~  f 1 )E + p(Ai + A2))7 

p > o ,  

where the U(1/1) doublets 2 are of the form (3p) or {3p- 1 , l ) .  The precise sharing 
of octahedral irreps between these forms depends on n (mod 6). 

In some cases it is necessary to use the O(2) parentage label or the U( 1) boson or 
fermion content, to distinguish levels. (For example the octahedral doublet containing 
(3 1 0 0)- 11 3 0 0) is unchanged under the operation b, + b2, b2+ -bl; its character, 2, 
agreeing with that of [4] of 0 ( 2 ) . )  

As in 0 2, it is possible to calculate the perturbed energy of these states up to say 
second order in a. These energy shifts are listed in table 1 and depicted in figure 1. 
For a state of the form IB1BZF1F2) this energy shift is given by 

AE = a2(-32H12+48(F1 -F2)(B2- B1) - 24(B: +Bi) + 32B1B2 - 8(B1 + &)), 

- 0  'a---/ 

-E!. 

0 0 0 0 

I31 ib I 

Figure 1. Energy level schemes for ( a )  the E@ E and ( b )  TO 7 supersymmetric Jahn-Teller 
Hamiltonians. 
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where Hij = 1 if F, # Fj, and Hij = 0 otherwise. 

shifts is positive. 
The ground state is of necessity unshifted; it is curious that just one of the remaining 

4.3. T 2 0 . r ~  

We list in table 2 representative eigenfunctions, classification labels and second-order 
energy shifts for each level as for EO E in 0 4.2. Energy shifts are depictedin figure 1. 

The embedding of 0 in O(3) (see § 4.1) is defined by the rule [1]JT2(1) (note the 
parity, despite the positive spatial parity of !he physica! states) together with s y ~ -  
metrised products. This give? [O]&Al(0), [O]J.A2(0), [ l ] & T l ( l ) ,  [2]J.E+T2(2+ l ) ,  
[ i ] JE+T,(2+1) ,  [?]io+ 1 + 1 ,  [3]&6+ 1 + 1 ,  etc. 

A state of the form I B I B ~ B ~ F ~ F ~ F ~ )  has the energy shift 

AE = -4a2(H12+H23+H31 + 2(B1+ B2+B3) + 2(BIB2+B2B3+ B3B1)). 

Similar results will hold for the T 1 0 ~ 2  system, although the change of parities in 
the branchings O(3) 2 0 complicate some assignments. 

4.4. Supersymmetry and physics: energies 

As indicated in tables 1 and 2, certain vibrational states (those in which the U(1) 
fermion content is zero) have energies which are constrained by supersymmetry to 
equal those of corresponding states with one fermion state occupied (i.e. with a 
Jahn-Teller active level occupied) and one less quantum of vibration. While the 
supersymmetric Hamiltonian includes the Jahn-Teller coupling H,, the effects of this 
term will vanish in states with no fermions present. For purely vibrational states, then, 
the energy shifts are to be attributed entirely to anharmonicity (Ha). Supersymmetry 
relates these energy shifts to those induced by the Jahn-Teller coupling together with 
anharmonicity in a different system (one incorporating a Jahn-Teller active state). 

No such simple physical interpretation is apparent in the cases where multifermion 
states are present. Two Jahn-Teller active ions would not answer the requirements 
of the Pauli exclusion principle in the formalism of this paper. 

5. Dressing factors 

In this section we are concerned with higher-order corrections of some basic interaction 
vertex. In condensed matter theory these would often be called renormalisation effects; 
a relativistic field theorist might prefer the description of radiative dressing. 

5.1. Ham reduction factors for Jahn-Teller ions 

A purely electronic interaction acting within a Jahn-Teller active level will have its 
matrix elements reduced by the effect of the coupling H, to vibrations and in addition 
of the anharmonicity Ha of the vibrations. The amount of the reduction is of course 
characteristic of the various interactions, but depends on the choice of electronic 
operator O*'" only through its point group symmetry label p, independently of its 
physical origin or component m within the irrep p ;  we write the associated reduction 
factor as K A ( p ) ,  A = 2 (1) denoting E O &  (TOT) .  
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When the conventional higher symmetries ( 0  1) are present, the reduction factors 
often simplify. Since the supersymmetric Hamiltonians are highly constrained, the 
associated reduction factors are well defined (depending only on the one parameter 
a of § 3.2). For these reasons, it is of intrinsic interest to compute these reduction 
factors. The formalism of Payne and Stedman (1983a) is ideally suited to this task, 
since anharmonic effects are included systematically. 

In carrying out their method to fourth order, we have to compute the diagrams of 
figure 2(a)-(g). Figure 2(a)  is the standard second-order term from H,, and figure 
2 ( b ) - ( e )  the corresponding terms at fourth order. These are evaluated in Payne and 
Stedman (1983b). Cubic anharmonicity contributes a fourth-order contribution as in 
figure 2(f), and quartic anharmonicity contributes figure 2(g). In addition, fourth- 

+ 

i d )  l e )  + 

i f )  ( 9 )  

F y e  2. Diagrams contributing to reduction factors at fourth order. 

order corrections to the denominators appearing in figure 2 ( a )  are required. The 
result (see appendix) is 

~ ~ ( p )  = 1 - ( 2 n +  l ) r : : a 2 - ( n 2 + n ) s : : a 4 + t f ; a 4  (34) 
with the coefficients given in table 3; n is the Bose-Einstein factor. 

These reduction factors obey the standard sum rules 

K,(2) =t(1 + K 2 ( 6 ) ) ,  2(Ki(2)  - 1) = 3(Ki(  l ) -Ki(T)) ,  (35) 
which are associated with time-reversal considerations, and are applicable at fourth 
order in models with one vibrational frequency (Payne and Stedman 1 9 8 3 ~ ) .  However, 
they show no obvious new special feature, to be associated with supersymmetry per 
se. For that we must enlarge the concept of a reductiori factor (§ 5.2). 

5.2. Supersymmetry and physics: reduction factors for vibrational operators 

5.2.1. Introduction. Supersymmetry requires a connection between the properties of 
a Jahn-Teller ion and those of the anharmonic vibrations with which it is (supersym- 
metrically) coupled. In the case of the reduction factors just calculated, we expect to 
find comparable reduction factors for similar vibrational operators. 

In order to quantify this, consider first as in § 5.1 a purely electronic irreducible 
tensor operator Opm, p being the irrep and m the component label under the point 
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Table 3. Coefficients in the expansion of (34) for the reduction factor K A ( p ) .  A = 2 (i) 
applies to EO E (TO 7) .  

2 6 64 212 x 7'13 28 X 7319 
2 2 32 2" x ? / 3  2 ? x 7 3 / 9  
i 2 12 23 x 33/13 -2'X 3 X47 
i 1 12 2' x 353 -2' X 11 X 13 
i i 4 2 3 ~ 7 x 1 7  -22x72 

group G. If this is expanded in terms of fermion creation and annihilation operators, 
themselves also irreducible tensor operators with irrep A (E or T in the octahedral 
examples discussed here), 

0'" = E  O$"f+fi 
i j  

the coefficients are proportional to Clebsch-Gordan symbols of G by the Wigner- 
Eckart theorem, and we may write in coupled-tensor notation 

(37) O w =  + A  A ~r If f Im. 

5.2.2. Zero temperature. Even under perturbation, the vacuum state may be ignored; 
no fermion operator, and only symmetric boson operators, can give any matrix element 
in it. The lowest states of interest are then the one-particle states. 

We write one-fermion zero-boson eigenstates of HN as = f: 10) (i.e. Fi = 
Si/, Bi = 0), and the corresponding eigenstates of the supersymmetric Hamiltonian as 
I+/). At low temperatures, these will give the leading contributions to all expectation 
values. 

The Jahn-Teller reduction factor relates the matrix elements of Opm in these two 
sets of states (i.e. for the interacting and for the non-interacting case): 

Since the states (I4J) are normalised eigenstates of H1 with eigenvalue E say, we may 
write (using H = ( S  + S + ) 2 ) :  

(39) 
The state ( t , b r )  = E-"2(S+  S+)I&) is the bosonic counterpart of Idr) (lt,b/)o = b:IO)), and 
is normalised by the E-1'2 factor (supersymmetry makes I$,) and I4/) degenerate). 
Hence 

(40) 

(41) 

(f#qlO'm(c#J/f) = E-2(4,((s+ S + ) 2 0 ' m ( S +  S+)214/,). 

(411 O""l4/4 = E -l(t,b/I @"I $ I , )  

0"" = ( S  + S + )  O@"(S + S + ) .  

where 

The commutation relations of equations (lo), (12) etc enable us to commute 0"'" 
through ( S  + S + )  etc, so as to write 0"" = 2, Ot"p:pj +& where the terms in x have 
either a leading fermion creation operator or a trailing fermion annihilation operator. 
Since even under perturbation the states {[t,h,)) will not contain any fermion creation 
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operators, g will not contribute to the matrix element, and we conclude that 

&" = [ p + A p A ] : .  (42) 

Equations (40), (42)  indicate a link between the effects of the perturbation interactions 
on matrix elements of bosonic operators in bosonic states, and similar effects on matrix 
elements for fermions. The link is not a direct analogy for two reasons; a factor E-', 
containing perturbative corrections, appears in equation (40), and dPm differs from 
the more obvious analogue 

Pp" = [ b+"bA]:. (43) 

An external coupling to the vibrational system, such as external stress, will naturally 
be expanded in terms of the fundamental operators b,, b: and thus of the operators 
P". A natural definition of vibrational, as opposed to electronic, reduction factor, 
L A ( @ )  is thus given (in analogy with equation (38)) by 

( $ , I p " "  I$/') = LA (@) O ( $ l l p w m  I$1')0. (44) 

The LA(@) would then parametrise the effects of anharmonicity on the matrix elements 
associated with the external coupling. (The analogy is not complete in that LA(0) is 
not necessarily unity.) If we combine equation (40), the corresponding equation when 
a = O  (when @." =P""),  equations (38),  (44) and the result 

( $ , l o * " l $ 1 ' )  = c A ( @ ) ( $ l l p C l m I $ C * )  (45) 

LA ( P 1 = EKA ( P I/ (&CA (I.( ) 1 (46) 

given by the Wigner-Eckart theorem, we obtain 

where Eo is the unperturbed energy. Equation (46) quantifies the restriction imposed 
by supersymmetry on the electronic (Ham) and vibrational reduction factors. 

We have used perturbation theory to determine all wavefunctions and operators 
in these expressions and thus have evaluated all the terms in (46) explicitly to second 
order (table 4). It follows that, for example, L 2 ( 2 )  = K 2 ( 2 ) ,  i.e. the electronic and the 
vibrational reduction factors are equal in this case. 

While these results relate closely to observables, we cannot suggest a method of 
determining vibrational dressing factors purely from experiment. They might rather 

Table 4. Electronic and vibrational reduction factors for several supersymmetric octahedra! 
Jahn-Teller systems to second order and at zero temperature. The labels 0, 6, 2, 1, 1 
denote A,, A2, E, T, , T2 irreps; the supersymmetric one-quantum energies are E ( A  = 2) = 
1 -32a2 (table l), E ( A  = i)  = 1 -8a2 (table 2); the constants OF are chosen to be the 
unnormalised values S,, so that 6O0 is just the vibrational part of the supersymmetric 
Hamiltonian (equation (15)). 

2 0 1 1 +56a2 1 - 88a2 
2 6 1 - 64a2 1 -96n2 1 
2 2 1 - 32a2 1 - 32a2 1 - 32a2 
i 0 1 1 + 15a2 1 - 23a2 
i 2 1 - 12a2 1 - 18a2 1 - 2 ~ ~  
i 1 1 - 12a2 1 - 16a2 1-4a2 
i i 1-4a2 1+2a2 1 - 14a2 
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be derived from a comparison of the observed matrix elements of a lattice operator 
such as stress with the predictions of a harmonic model. Methods of determining Ham 
reduction factors experimentally are well documented (Bates 1978, Challis and de 
Goer 1983). In principle, the measurement of such factors, together with a comparison 
with table 4, would give one estimate of the degree to which a particular system 
approximated the supersymmetric case. 

5.2.3. Finite temperature. The states { 2 } ,  (3) .  . . of U ( N / N )  will affect the reduction 
factors at higher temperature. The electronic reduction factors may be defined through 
the thermal expectation values of the operators (Payne and Stedman 1983a) and 
indeed thermal factors are included in the explicit calculation of 9 5.1. The question 
arises as to how far the isomorphisms of § 5.2 .2  can be generalised to cover these effects. 

The eigenstates of the full Hamiltonian may be classified into (a) the vacuum state, 
and also those in which the supersymmetry renders degenerate two states with fermion 
numbers one and zero; (b) a similar pair with fermion numbers two and one; (c) a 
pair with fermion numbers higher than one. The supersymmetry operation always 
links states with fermion numbers differing by unity, and never of itself produces 
triplets or quartets (since S2 = 0). This classification is indicated in tables 1 and 2. 

The argument of § 5.2.2 may be generalised formally to states of type (a) only; 
within the bosonic partners of these states, the matrix elements of x may be ignored 
as before. The connection between the types of reduction factor is rather less close; 
if we define K , ( p ,  T )  at finite temperature by 

in which 14,) is summed over all possible one-fermion states of type (a), then the 
energy factor in (40) gives a weighted sum different from the thermal average required 
for the analogous vibrational reduction factor. Together with the special problems of 
states of type (b) and (c) (when equation (42) is inapplicable, although we note that 
type (a) states are the most numerous) this makes the correspondence between 
electronic and vibrational reduction factors less direct in the finite-temperature case. 

5.3. Field theoretic consequences 

Finally, we comment on the graphical consequences of supersymmetry for such field 
theoretic diagrams as those computed in § 5.1. The method of calculation developed 
in Payne and Stedman (1983a) (appendix 1) requires the invariance of each vertex 
independently under the point group; this allows the (graphical) breakdown of any 
diagram into group invariants and nj symbols. This cannot be repeated directly for 
supersymmetry, since supergroup operators mix different vertices (e.g. the third degree 
vertex for two fermions and one boson, with that for three bosons). Supersymmetric 
actions have of course been given by Salam and Strathdee (1975) and Cooper and 
Freedman (1983); however, a canonical analysis expressing the Hamiltonian in terms 
of superfields would permit a supergraph analysis of this problem. In this, a supervertex 
would integrate the above vertices into a single entity which was invariant under the 
supergroup. We might then expect to generalise the graphical analysis of symmetry 
constraints used by Payne and Stedman (1983a) in Jahn-Teller systems to a graphical 
analysis of supersymmetry. 
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Appendix. Calculation of electronic reduction factors for the supersymmetric case 

In the method of Payne and Stedman (1983a) an intermediate set of parameters d ( p )  
are found. These in turn are linear combinations of a symmetry-dependent factor Jf 
corresponding to the nj symbols appearing in figure 2( i) and of an energy-dependent 
factor X,. 

The diagrams of figure 2(a) ,  ( f )  and (g) have the same structure, and thus the 
same J* factors; their joint contribution to fourth order is (including fourth-order 
corrections to the denominators of figure 2(a))  

d ( p )  = J:: [ ( 2 n +  l ) y - 2 y 2 +  ( y3/9)(114n2+ 114n +29) -3y4(2n + l)’] 
where y =  g / w ’ ,  y3 = i3/w4, y =  i 4 / w 3 ,  w is an overall frequency factor scaling the 
supersymmetric Hamiltonian, n = (exp(po) - l)-’, p = 1/ kT. The reduced matrix 
elements (in the notation of Payne and Stedman (1983b)) have the values 

When the interaction constants Vi,,. , ., Wklm., . appearing in (22) and (24) are inserted, 
we obtain the parameters of table A l .  

Table Al. Reduced matrix elements for the supersymmetric Hamiltonians. 

EO E TOT 

Y 32a2 8a2 
Y3 448a4 144a4 
Y4 96a4 16a4 

The fourth-order diagrams of figure 2( i ) ,  i = b to e contribute 

d ( p )  = 1 JYXi (38) 
i 

with 4Xb = 4Xc = Xd = X, = (2n’ + 2n + 1) y’, and, the J ?  values required are given 
in Payne and Stedman (1983b, c) and are summarised in table A2. The reduction 
factors are given by 

K * b )  = l+[d(~)-d(0)1[1-d(0)1.  
Upon insertion of the tabulated parameters into these equations, we derive (34). 
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Table A2. Contributions from linear coupling at fourth order, to the nj symbol content 
Jf offigure2(i)’scontribution tothefactor d ( P ) .  A =2 (1)correspondstoEO~ (TOT). 

i a  b C d e 
A P 

- 2 
- -2 - 
1 

- 2 0 1 1 

2 2 
2 6 -1 1 

1 i 
- a  

i 
i 2 - 4  5 

t 
i i I 5 4 I 5 

i 

- - - - 

1 -I 0 1 1 f 
5 

1 -1 
-4 
-t - 

1 1 
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